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For estimation, we consider a two-stage estimation procedure similar to that of Shih (1998, Biometrics 54,
1115-1128). We evaluate the properties of the estimators through simulations and compare the performance
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.1. Introduction

Consider two types of expression for a disease, the incidence
and the age at onset of disease for the diseased individuals.

-Risk models for overall susceptibility (lifetime risk) that con-

sider only the first expression by treating the disease as a

"binary trait of being affected or unaffected can produce mis-
-leading results because, for individuals without the disease,

due to incomplete follow-up, it is often not known whether
they will eventually develop the disease. On the other hand,
models for survival analysis typically assume that everybody
has the same susceptibility to the disease and will eventually
develop it if followed up sufficiently long. These models may
not properly describe the disease risk since risk factors such
as genetic predispositions can conceivably make one group of
individuals more susceptible to the disease than other groups.
In models where both types of expressions are considered, the
effect of a covariate or a risk factor can act on either the over-
all susceptibility or the age at onset or both. In segregation
analysis, e.g., where one tests for a major gene effect using
familial disease data, Elston and Yelverton (1975) proposed
models where the effect of a gene can be manifested either in
the susceptibility or the age at onset of the disease. Both types
of models are commonly used in practice (cf., Claus, Risch,
and Thompson, 1991), and it is debatable which model will
be more appropriate in a particular situation. Although it has

often been assumed in many studies of breast cancer that the
effect of the gene is manifested as an earlier age at onset,
Ciske et al. (1996) found that, for some families, the effect of
a putative susceptibility gene can be better modeled by repre-
senting its risk in terms of overall susceptibility to the disease
rather than a shift in the age-at-onset distribution.

In this article, we consider the problem of modeling familial
correlation of diseases. Standard modeling approaches for cor-
related binary data, such as GEE (Zhao and Prentice, 1990;
Liang, Zeger, and Qaqish, 1992), may not be able to account
for the age-at-onset information and the possible censoring
of the controls in a satisfactory way. Both of these problems
can be accounted for by using models for bivariate or multi-
variate survival data, such as copula or frailty models. These
models, however, specify the correlation among individuals
only in terms of their ages at onset of the disease. Given that
familial correlation of a disease is typically caused by aggre-

gation of various genetic or/and environmental risk factors of -

the disease and the effect of such factors can be either in the
susceptibility or the age at onset, it is plausible that familial
correlation, or at least part of it, will be better expressed in
terms of the overall susceptibility. To account for such possi-
bilities, in this article, we propose a model for bivariate data,
that specifies the correlation between overall susceptibility of
two individuals and also the correlation between the ages at
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onset of two susceptible individuals. Random effect models
-and marginal models are two common approaches for analyz-
ing correlated data. We consider the marginal approach, i.e.,
the marginal distributions are not affected by the dependency
structure. Similar to the spirit of Shih (1998), a two-stage esti-
mation approach allowing for possible censoring is considered
for estimation of the parameters of the model.

An application of this research is considered using the real
data example from the Washington Ashkenazi Study (WAS)
(Struewing et al., 1997). In this study, more than 5000 vol-
unteer Ashkenazi Jews living in the Washington, D.C., area
provided blood samples for genotyping of BRCA1/BRCA2
mutations and family history information on breast and some
other common cancers, including ages at onset for the first-
degree relatives. One primary interest of the study was to
estimate the risk of breast cancer among the carriers and non-
carriers of the gene mutations. In this article, we will only use
the family history data on breast cancer for the first-degree
female relatives of the volunteer participants, the interest be-
ing estimation of the correlation between susceptibility of the
relatives as well as between the ages at onset of the suscepti-
ble relatives. Estimating these two types of correlation can be
informative in determining whether the influence of familial
risk factors for breast cancer is better expressed in terms of
overall susceptibility to the disease or by the age at onset of
the disease or a combination of both.

The rest of the article is organized as follows. In section

*2, we propose the new model and a two-stage estimation ap-

proach for the parameters in the proposed model based on
a quasi-likelihood of the data. In Section 3, we apply the
proposed model to investigating familial association of breast
cancer using data from the Washington Ashkenazi Study. In
Section 4, we evaluate the performance of the proposed ap-
proach using simulation experiments. In Section 5, we discuss
other potential applications of our method, particularly in
the area of cure modeling. The article is concluded with a
discussion on the problem of parameter interpretation when
the hypothetical mixture population does not exist.

2. Methods
2.1 Model

Use of rmxture models has been popular for joint modeling of
the overall risk of a disease and the ‘age-at-onset distribution
of the diseased individuals (Elston and Yelverton, 1975; Fare-
well, 1977, Farewell Math, and Math, 1977; Kuk and Chen,
1992). In what follows, we consider an extension of these
mixture models to a bivariate setting. Define an individual to
be susceptible if he/she will eventually develop the disease if
followed up sufficiently long. For a pair of individuals, j = 1, 2,

define
y, = {1 if the jth individual is susceptible
7 0 otherwise

and let Tf denote the age at onset for the jth individual when
Y;=1

With the above notation, we now describe a marginal
modeling approach. For j = 1,2, let ¢; = Pr(Y; = 1) and
Sj(t) = Pr(T} > t | Y; = 1) describe the marginal dis-
tribution of Y and the failure time TJ* for the susceptible
individuals, respectively. At this stage of the model, several

alternative choices are possible. Depending on specific
applications, including the example we consider in Section 3, |
one may need to assume a common marginal distribution for 3

the two members of the pair, i.e., ¢1 = ¢2 and Sy () = Sa(t)

for all t. Also, one may specify parametric forms for (t)
and S3(t) or one can leave them unspecified and treat them |
nonparametrically.

The next stage of the model involves specifying a de-

pendence structure between the members of the pair. We °

introduce two types of association, one between the suscepti-
bility to the disease and one between the failure times of two
susceptible members. The pairwise odds ratio parameter is a
natural choice of the measure of association between Y7 and
Ys. Let

- P11Poo
p1opo1’ :
where p;; = Pr(Y1 = 4,Y2 =.j), i = 0,1, j = 0,1."
We take a copula modeling approach for specifying the
dependency structure between the failure times of two sus-
ceptible individuals. Copula models are classes of bivariate
survival distributions, specified in terms of the marginal
survivor functions and a copuls function, a continuous bi-
variate distribution function on the unit square [0,1]? with
uniform marginals. Different choices of copula functions
impose different association structures between the failure.
times without changing the marginal distributions. ‘
Let Co(u,v),a € A be a class of distribution functions with .
uniform margins on [0, 1]? and assume

Pr(TT > t1,T5 > t2|Y1 = 1,Ys = 1) = Cay (S1(t1), Sa(t2))
(1)

for some a9 € A. In our application, we consider three_
popularly studied models:

(1) Clayton’s model (Clayton, 1978),
Co(u,v) = { @0+ =0 g,

uv, 6=1,
(2) Frank’s model (Frank, 1979),
Ck(u,v)
7 A
_ {log{l— Q—"i—)_%”_)}/logn, 0<k<l,
uv, K=1,
(3) Positive stable model (Hougaard, 1986),
Cw (u, 'U) ;
w '
_ Jexp [—{(—logu)l/“’+(—-logv)l/“’} ], O<w<l,
uv, w=1. :

In the above formulae, we have shown the range of the pa- L

rameter values that corresponds to positive association. In '
Frank’s and Clayton’s models, however, one can accommodate
negative association, too. Specifically, k > 1 and ¢ < 1
correspond to negative association in Frank’s and Clayton’s
models, respectively.

All the copula parameters, 6, &, and w, measure strength
of association, but their exact interpretations are different.
One way to interpret these parameters is through the cross-
ratio function associated with a bivariate survival distribution
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S(t1,t2) (Clayton, 1978),
S(t1,t2)D1D2S(t1, t2)
{D1S()}{D28(t)}

c(ty,t2) =

.where D; denotes the differential operator —~0/8t;. This

function gives a time-dependent measure of association
between two failure times and may be interpreted as the
ratio of the hazard rate of the conditional distribution of
Ty (T2) given To = to (T1 = t1) to that of T} (T3) given
To > t2 (T1 > t1) (Oakes, 1989). Oakes showed that,
for the general class of Archimedian distributions (Genest
and Mckay, 1986), c(t1,t2) uniquely characterizes S(t1,t2)
and depends on (t1,t2) only through v = S(t1,t3), so that
c(t1,t2) = c*(v) for some function c¢*. The three models we
described above can be shown to belong to the Archimedian
family of distributions and to correspond to three parametric

forms for the function c*(v). In Clayton’s model, e.g., the '

.cross-ratio function ¢*(v) is independent of (t1,t2) and has
the constant value 4. On the other hand, for stable model
() = 1+ (1 — w)/(~wlogv) (Oakes, 1989), which is an
increasing function of v, it approaches one as v — 0 and
approaches oo as v — 1. Thus, in this model, for fixed
v, the strength of association increases with w decreasing,
whereas for fixed w, there is a stronger association for larger
values of v (or smaller values of t; and t3). In Frank’s
model, c*(v) = —vlogk {1+ x¥/(1 — &%)}, which is also an
increasing function of v but is linear in shape, with ¢* — 1 as
v— 0.

Even though the copula parameters for the parametric
association models give a valid measure of association, they
can be abstract quantities to interpret. Kendall’s tau is a
better understood global measure of association (Oakes, 1989)
and, in this article, we often report the value of Kendall’s tau
corresponding to estimates of the copula parameters. Since
the copula parameter has different interpretations in different
models, Kendall’s tau is also useful for comparing association
estimates between the models. For the rest of the article, we
will use a as a generic notation for the copula parameter
irrespective of the choice of the model.

In our modeling and estimation approach, we also implicitly A

assume that, for a susceptible individual, the marginal
distribution of his/her failure time does not depend on the
susceptibility status of the other member, i.e.,
Pr(Tf 2t | Y;=1,Y;,i # 5)

=Pr(Ty 25 |Y;=1), j=12 2)
This assumption is similar to the so-called subject-specific-
effect or reproducibility assumption often made in the
marginal regression ~modeling approach for multivariate
outcomes (cf., Whittemore, 1995). To see that Assumption 2 is
needed, first note that, by marginalizing the joint distribution
given in equation (1), we obtain,

Sj(t;) =Pr(T} >t; | Y; =1,Y; = 1,i # j).

Since by definition of our marginal model Si(t) =Pr(T; > ¢t|

Y; = 1), it follows that, for consistency of model definition,
we need the assumption given in equation (2).

2.2 Estimation

Here we consider a setting suitable for the WAS example. The
methods described in this section, however, are relevant for
other applications of the proposed model as well.
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For the ith of m families, let (0i5,ti5), 3 =1,...,n;, be the
observed data on the history of a disease of n; members of the
family. Here § denotes the indicator of whether the individual
developed the disease (§ = 1) or not (§ = 0) during the
follow-up and t denotes the integer age at onset (t)ifd=1
and the follow-up time (censoring time) if § = 0. Clearly,
for an individual, § = 1 implies y = 1, i.e., the individual
is susceptible. For § = 0, however, y is unknown due to
censoring. Individuals within a family are assumed to have
a common marginal distribution, described by the proportion
of susceptible individuals, ¢, and the distribution of the ages
at onset among the susceptible individuals, S(t). We assume
that the joint distribution of any pair of individuals within a
family can be described by the bivariate model we proposed,
with the association parameters v and « being common to
all the pairs. No assumptions are made on third or higher
order dependency structures. Finally, we make the following
independent censoring assumptions: the joint susceptibility
status of a pair of individuals is independent of their joint
censoring times; given one member is susceptible and the
other is not, the failure time of the susceptible individual is
independent of the corresponding censoring time; and given
both members are susceptible, their joint failure times are
independent of the joint censoring times.

Now we construct a quasi-likelihood of the data under the
proposed model that ignores the dependency among different
pairs within the same family. The contribution of a pair of
relatives is obtained from the likelihood of the paired data
under the proposed model and the contribution of a family is
obtained by taking the product over the contributions of all
the possible pairs from that family. Thus, the quasi-likelihood
has the form )

m m
Ly = HLZi = H H L k)0 (3)
i=1

i=1(4,k)eC;

where C; is the collection of all the possible pairs for family
and L(j,k)i denotes the contribution of the pair consisting
of the jth and kth member of the ith family. It follows
that, under the proposed model and independent censoring
assumptions, the likelihood of the data for a pair of relatives,
up to a constant, is given by

Lk, = Hl(u"j’uik)aijai"Hg(uij,uik)(l—a”)‘s““
X H3(uij,uik)aij(l—aik)H4(uij’uik)(l—éij)(l_J‘.k)’
(4)
where
Hi(uig, uir) = {Calugj, uz) = Calug, uik) ~ Ca(uij, ug)
| + Caluij, uik) } p11,
Ha(usj, uik) = {Calusj, uzp) — Caluij, uik) } p11
+ (ugh, — uik)por,
H3(uj, uik) = {C’a(ui_j,uik) — Ca(uij,uik)}pu
+ (ug; — uiz)pro,
Hy(uij, ui) = Ca(usj, uig)p11 + P10 + Uikpor + poo,
uij = S(ti;) and wj; = S(ti; — 1),
uip = S(tik) and  uy = S(tu — 1).
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Note that the contribution of each pair is given by a mixture
of one, two, or four terms depending on whether none, exactly
one, or both members of the pair are censored. If the first
member’s event was observed but the second member was
censored, e.g., then their contribution to the quasi-likelihood
is a mixture of two components, denoted by Hs above,
where the first component refers to the condition that both
members are susceptible and the second component refers to
the condition that only the first member is susceptible. We
also note that we have assumed age to be discrete and to
have been recorded to the nearest integer. These formulae
can be easily modified for continuous age by replacing the
first- and second-order differences by appropriate first-order
and second-order derivatives of the joint survivor function.

The motivation for considering the above quasi-likelihood
approach instead of the full likelihood of the data merits some
discussion. Both measures of familial association we consider,
namely v and «, are marginal association parameters that
characterize the association between two relatives at a time.
The quasi-likelihood approach requires model specification for
two relatives and treats higher order association as nuisance.
The full likelihood approach, on the other hand, requires
specification of a model for joint distribution of all the
relatives in a family, which may not be desirable primarily
for two reasons: complexity and sensitivity of the resulting
inference. In principle, both the susceptibility model and
the age-at-onset model can be extended to more than two
relatives without changing the marginal interpretation of the

‘parameters v and a. For the age-at-onset model, the copula

distribution can be easily extended to arbitrary family size if
a can be assumed to be constant across pairs of individuals.
But extension of the susceptibility model to large families will
involve specifying the joint distribution for a large number
of correlated binary random variables, which is typically
a complex task (cf., Liang et al. (1992) for a discussion).
Further complexity arises due to the latent structure of the
problem. Since the susceptibility status is not observable for
censored individuals, after the joint distributions for the age
at onset and susceptibility are specified, they need to be
mixed over all possible combinations of the susceptibility
status of the censored family members. As the number of
possible combinations increases geometrically with the family
size, the full likelihood becomes increasingly complex. In our
study, e.g., a significant number of families have five or more
members. For these families, computation of the likelihood
may involve m‘ixing over 25 = 32 or more terms: Finally,
we note that the consistency of the marginal parameters of
interest in the full likelihood approach relies on the correct
specification of the full joint distribution, which is more
stringent than the assumption of correct specification

of the model for pairs of individuals, a condition sufficient for
the consistency of the parameter estimates from the quasi-
likelihood.

2.3 Two-Stage Parametric Estimation

Assume S(t) has a known parametric form S(t; 3), where 8
denotes a vector of parameters whose values are unknown.
At stage 1 of the two-stage estimation method, we consider
estimating the marginal parameters B and ‘¢ using a
univariate mixture analysis approach that ignores the

_ dependency of the individuals within a family. The estimates

of 8 and ¢ are obtained by maximizing the following marginal

likelihood:
L= HLU
i=1
= H H [¢ {S(tij -10)- S(tij;ﬂ)}]5ij

x {¢S(tij;ﬂ)+1—¢}l—6ij- (5)

In (5), the contribution from a censored individual is obtained

as a mixture because of the unknown susceptibility status of

the individual. It is well known that such a marginal likelihood

approach that ignores the correlation between individuals
gives consistent estimates of the parameters of the marginal -
distributions and that the estimates are robust against the i /
misspecification of the correlation structure. At stage 2,
estimates of the association parameters are obtained by fixing
the marginal distributions at their estimates and maximizing

the quasi-likelihood (3) with respect to only o and 7.

Some further notation is useful in deriving asymptotic :

theory of the estimates. The joint estimating equation for

¥ = (¢,8)" and n = (v,a)’ can be written as two sets of

equations,

D Uu@) =0 and > Un($,m) =0,  (6)
i=1

=1

where Uii(y) = 7L 0/0¢logLy; and Ugi(v,m) = |

2;‘;1 d/0nlog Ly;. The asymptotic property of (1, 7) can be
stated as follows. :

THEOREM 1: Assuming that the true joint distribution for.f :

pairs of relatives satisfies the specified parametric model for:

some true parameter values (o, o) belonging to the interior
of the parameter space, as m (number of clusters) — oo,

(#',4') are consistent for (,m6) and m'/2[(% — yo)', ( —
n0)'] converges to a multivariate normal distribution with
mean zero and covariance matric A’lBA_l, where

{Ann 0
A= ,
{Am Azz]

By1 By
B= ,
{Bipz B

with
m—00

. - 6 -
All =~ lim m 1W Zulz(w)‘wi:ﬂ’o)’
i=1

. 110 w—
Ay =— Lm m IWZU%W”))I("’:%"’:W’
i=1

m—0o0

m
_ . -1 0
Agg = — mh_r’noo m a7 2:1 Uai (¥, Ml (w=to,7=n0)>
i=

and

m
o -1 .
By = mlgnoom ZVM {Ulz("po)},

t=1
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cov {U1s(%0), Uai(¥o,m0)} ,

i=1

Biz = lim m™!
m—+0Q

m
B = lim m™"  var {Uz(vo,m0)} .

The asymptotic covariance matrix can be consistently
estimated by replacing (vg,70) by their estimates and
the means and variances by their corresponding empirical
counterparts. The proof of the asymptotic normality theorem
follows by using a standard first-order Taylor’s series
expansion of the joint estimating equation given in 6). It
follows easily that m'/2[(s) — v )/, (1 — n0)’] is asymptotically
equivalent to 1/m1/2A_1 ZiZ1 U1i(¥0), Ugi(¥o,m0)]’, which
.is the sum of m independent (may not be identically distri-
buted) terms. Finally, an application of Liapounov’s central
limit theorem for the sum of independently but not necessarily
identically distributed random variables yields the desired

" Yesult.

"2.4 Two-Stage Semiparametric Estimation
Here we consider estimating the marginal distribution nonpar-
ametrically at the first stage and estimating the association
parameters at the second stage with the marginal distribution
fixed at the corresponding nonparametric estimate. We

- propose estimating the marginal lifetime risk (¢) using the
maximum value of the marginal Kaplan-Meier empirical
distribution function based on (ti,0i5), J = 1,...,n4, 4 =
1,...,m. Thus, if Ty, where N = Tn;, denotes the maximum
of the t;;’s and K(t) denotes the Kaplan-Meier distribution
function, we have ¢ = K(T). The cumulative distribution
F(t) = 1-5(t) can be estimated by normalizing the improper
distribution function K'(t) as F(t) = K h(t) /. For independent
and identically distributed censored failure time data, Maller
and Zhou (1992, 1995) developed asymptotic properties of

» such nonparametric estimators. Further work is needed to
derive the asymptotic properties of these estimators in a
¢orrelated data context and hence obtain the asymptotic
variances for the semiparametric estimates of the association
parameters in our model. Alternatively, one can consider a
bootstrap approach with families as the bootstrap sampling
units to obtajn the variance of the semiparametric estimator.
The bootstrap, however, needs to be properly done so that it
reflects the true uncertainty of the estimates. In the following
section, we describe the bootstrap procedure for our specific
example.

3. Example

We applied the proposed methodology to the WAS data.
Information on age at onset of breast cancer for the female
first-degree relatives of the volunteers is available to us.
The relatives are treated as a cohort of individuals who are
followed from their birth until the incidence of cancer or the
censoring time. The ages of the relatives at the time of the
interview of the volunteer or, for deceased relatives, the age
at which the relative died defines the censoring times. A total
- of 13,223 subjects coming from 4856 distinct families was
used to estimate the marginal survival. For the parametric
marginal distribution, we used the Weibull model with the

form S(t; 8) = exp{—(ﬁlt)ﬂz}-

Table 1
Frequencies of number of WAS families
by the number of pairs a family contribute

Number of Number of
pairs/family families
1 1858
2 385
3 526
4 217
>5 224

In estimating the association parameters, we chose a subset
of the data in which the subjects in the same family are first-
degree relatives to each other. It was felt that the pairwise
association should be similar if the members of the pairs
are first-degree relatives to each other. This subset of data
contains 6769 pairs coming from 3210 families. Table 1 is a
tally of the number of such pairs each family contributes to
the estimation of the association parameters. More than half
of the families contribute only one pair, and the majority of
the families contribute. no more than three pairs.

To obtain the bootstrap variance of the semiparametric
estimates, we draw simple random samples with replacement
from the 4856 families of the same size as total number of
families. For each of the bootstrap samples of families, we
apply our two-stage estimation procedure. The first stage
involves all the individuals in the selected families, but the
second stage involves only a subset of these individuals;
only those families that have at least two family members
are included and then, from each such family, we construct
all possible pairs of relatives so that the members of the
pairs are first-degree relatives to each other. The bootstrap
variance estimate is obtained as the variance of the parameter
estimates from 2000 bootstrap samples.

Figure 1 displays the nonparametric and parametric
estimate of ¢ x F(t), the cumulative risk of breast cancer for a
woman with unknown susceptibility status. Close agreement

- cumulative risk
0.10 0.15 0.20 0.25 0.30
L L L 1 L

0.05
1

0.0

L} T L) L]
0 20 40 60 80 100

age at onsat of breast cancer

Figure.1. Nonparametric and parametric estimates of the
cumulative risk of breast cancer from the WAS study. The
solid line is the nonparametric estimate and the dotted line
is the parametric estimate.
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Table 2
Estimates (SE) from the WAS study

Parametric margins

So(t) = exp{~(£18)*}

log 81 —4.24 (.0156)
log B2 1.53 (.0216)
¢ 0.22 (.0093)
Clayton Frank Stable
y 2.76 (.5023) 2.79 (.5384) 2.84 (.5486)
o 0 = 1.39 (.2085) K = 0.24 (.0634) w = 0.84 (.0547)
Nonparametric margins
¢ 0.23 (.0103)
Clayton Frank Stable
vy 2.67 (.6209) 2.84 (.4652) 2.94 (.5025)
o 6 = 1.51 (.2821) k= 0.19 (.1212) w = 0.89 (.0450)

of the nonparametric and parametric curves indicates that
the Weibull model fits the data well. The oldest incidence
occurred at age 91, after which the Kaplan—Meier cumulative
risk estimate leveled off at 0.23. Between .age 91 and the last
observation at age 103, there were 178 censored observations.
Such a large number of subjects censored at the very old ages
provides strong evidence that the Kaplan—Meier curve has
truly leveled, and the leveled value from the Kaplan—-Meier
should be a good estimate of the lifetime risk.

Parametric estimates and their standard errors (the stan-
dard errors for the semiparametric estimation were bootstrap
standard errors) are summarized in Table 2. For modeling the
association between age at onset of relatives, we considered
three models described in Section 2.1. We note that, due to
the use of the marginal likelihood approach at stage 1, esti-
mates of the parameters of the marginal distribution do not
depend on the choice of these association models. Both the
estimate and standard error of ¢ are remarkably similar in

the parametric and nonparametric models. Irrespective of the -

choice of nonparametric or parametric marginal distribution
and the choice of the copula models, estimates of v show a
strong and significant association between susceptibilities of
relatives. The copula parameter has different interpretations
in different models and hence is not directly comparable be-
tween the models. However, the parameter estimates from all
the models considered correspond only to weak association.
For the parametric estimate of x = 0.24, e.g., Kendall’s tau
is only 0.18. In general; Kendall’s tau corresponding to the
various estimates ranged between 0.1 and 0.2. Thus, we see
that familial association is mostly seen in joint susceptibility,
which suggests that the combined effect of various familial
risk factors for breast cancer in this population is expressed
mostly in terms of overall susceptibility. Finally, we note that,
if the possibility of correlation in overall susceptibility was left
out, i.e., if v was fixed at 1.0, then the semiparametric esti-
mate for each of 6, k, and w would correspond to a much
stronger association for joint age at onset (data not shown),
which results from absorbing the association from the joint
susceptibility into the association between ages at onset.

4. Simulations
We conducted a simulation study to evaluate the two-stage
estimator. We generated 5000 (mother, sister) pairs from the
bivariate mixture model with parameters similar to those es-
timated from the semiparametric model. We chose Clayton’s
association model for the joint age-at-onset distribution. Cen-
soring times for the mothers were generated from N(75, 15)
and for the sisters were generated from N(50, 12), both of
which were similar to those observed in the WAS data. The‘
simulation experiment was repeated 250 times. '
Table 3 presents the simulation results. Both parametnc"
and semiparametric approaches produced little bias. The large :
variances for the association parameters v and 6 are mainly !
due to the small incidence rate. With ¢ = .2 and censoring,vg
the proportion of incidence observed is less than 10% on aver- -
age. Thus, the joint incidence is sparse. When ¢ is increased
to 0.3, there is a substantial reduction of variances for v and 8.
It is interesting to note that the semiparametric approach has .
about the same efficiency as the parametric procedure. In par- |
ticular, relaxing the parametric assumption on the marginal
distribution does not appear to reduce the efficiency of the as- |
sociation parameters. We see that, when v = 1 is forced, i.e.,
only correlation between ages at onset is allowed and correla-
tion between susceptibilities are ignored (which is equivalent
to the standard practice of modeling the joint age at onset by
the copula models themselves), the semiparametric estimate -
for 6 gives an overestimate of the true correlation between the '

-ages at onset. Finally, Table 3 also shows the performance of !

the sandwich variance estimator we proposed in Section 2.2
for two-stage parametric estimation. By comparing the means !
of the estimated standard errors over the simulated data sets
(fourth column) to the empirical standard errors (third col--
umn), we see that, overall, the proposed sandwich standard
estimator performs well in estimating the true standard er-
rors.

5. Discussion

In this article, we have proposed a bivariate distribution for
flexible modeling of correlation in familial disease data. Two

,
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Table 3

Performance of the two-stage parametric and semiparametric
estimators in Clayton’s copula model from 250 samples of 5000 pairs

Parametric Margins

Mean SE  Mean(SE) Mean SE  Mean(SE)
¢=.2 .20 .007 .007 $=.3 .29 .008 .008
log /1 = —4.23 -—-4.23 .012 011 log By = —4.23 —4.23 .009 .009
log B2 = 1.58 1.58 .029 .028 log B2 = 1.58 1.58  .023 .023
v=272 2.81 .628 .629 v =272 - 2.79 534 .549
6 =1.50 1.55 .324 .319 6 =1.50 1.51 .201 212

Nonparametric Margins

Mean SE Mean SE
¢=.2 .20 .007 ¢=.3 .29 .009
v =2.72 - 2.82 .625 v =2.72 2.78 .534
6 =150 1.54 318 6 =1.50 1.50 .203

Nonparametric Margins, Correlation in Ages at Onset Only

Mean SE Mean SE
0 = 1.50 2.21 .282 0 =1.50 1.98 .183

'types of expression for the disease are considered simulta-
neously, the disease incidence and the age at onset of the
.diseased individuals. Odds ratio modeling is considered for

‘measuring association between two individuals in terms of

their disease incidence, whereas parametric correlation mod-
els induced by the copula class of functions are considered
for modeling correlation between ages at onset of diseased in-
dividuals. The model can be easily extended to incorporate
covariate information, both into the marginal and the asso-
ciation parameters. Typically, for studying familial diseases,
covariates for the marginal parameters include the observable

_risk factors of the disease and the covariates for the associ-

‘ation parameters include the relationships between relatives.
It may be of scientific interest to see whether the incidence
ahd the age at onset of the disease depend on different sets of
covariates.

In a univariate setting, mixture models have received con-
siderable attention in various areas of survival analysis, in-
cluding analysis of data on time to recurrence (or death) of
diseases (Boag, 1949; Gordon, 1990), analysis of long-term
survivorship in toxicological animal experiments (Farewell,
1982; Taylor, 1995}, and study of the incubation period of

"AIDS after HIV infection (Lui, Darrow, and Rutherford, 1988;

Struthers and Farewell, 1989). A common theme in all these
areas of application is that a fraction of individuals has been
assumed to be cured or immuned so that they can never ob-
serve the end-point event. Thus, in this approach, individuals
who are considered censored in an ordinary survival analysis
are considered to be a mixture of the cured individuals and
the noncured individuals who are censored due to incomplete
follow-up. Maller and Zhou (1996) is an excellent reference for
this literature. The bivariate mixture model we propose can
be thought of as an extension of the univariate cure models to
the bivariate situation. Potentially, our model will be useful in
analysis of correlated survival data when cure is a possibility.
Our model, e.g., can be used to study familial association in
diseage recurrence after treatment. For such data, it is likely

that some proportion of individuals are cured by the treat-
ment and will never experience the disease. Estimating the
correlation between cure probabilities between related indi-
viduals can shed light on possible interactions between the
treatment and genetic factors. Similarly, in toxicological an-
imal studies, the proposed model can be used to investigate
possible litter effect on immunity of animals to the toxicant.
Models for bivariate survival data that assume correlations
among individuals are expressed only in terms of time to event
may not be satisfactory for such data.

As in the case of univariate mixture models, there may be
situations when the bivariate model faces lack of identifiabil-
ity or/and interpretability. Consider a hypothetical situation
where everybody will eventually have a particular disease if
they are alive for a very long time but we only observe a small
fraction of the disease incidence because individuals have a
feasible maximal lifespan due to other causes of death, say
about 100 years. It seems that the lifetime risk in this situa-
tion just gives an estimate of the cumulative probability of the
disease (marginal for univariate models and joint for bivari-
ate models) until 100 years. Thus, we see that interpretation
of the overall susceptibility or lifetime risk of individuals de-
pends on the extremum of the distribution of the survival time
of patients from other causes of death (censoring time). Since
very few people can be expected to live up to the maximal
lifespan, it also seems that there is very little information in
estimating cumulative risk until 100 years. We note that, in
the real example considered in this article, the oldest obggrved
incidence of the disease was 91, even though a relatively large
number of individuals were followed beyond that age. This
suggests that, in this population, the probability of develop-
ing breast cancer after age 91 is very small and hence the
estimate of cumulative risk we obtain till age 91 is a good
approximation of the lifetime risk. For proper interpretation
of parameters, it can be important to establish whether the
hypothesized populations of insusceptible, immuned, or cured
individuals truly exist or not. For i.i.d data, Maller and Zhou
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(1992, 1996) have developed formal methods of testing for the
existence of such a population based on the properties of the
Kaplan—Meyer estimator of the cumulative risk function. Fu-
ture theoretical work is needed to extend this method in the
context of correlated data. A starting point of this research
could be the work by Ying and Wei (1994) on the properties
of the Kaplan—Meyer estimator for dependent data.

RESUME

Pour modéliser la corrélation dans les maladies familiales avec
la variable “age de début”, nous proposons un modele bivarié,
qui incorpore deux types d’associations par paires, I'une en-
tre le risque lié & la durée de vie ou susceptibilité globale de
deux individus, et 'autre entre les ages de début chez deux in-
dividus susceptibles. Pour I’estimation, nous considérons une
procédure a deux étapes similaire a celle de Schih (1998). Nous
évaluons les propriétés des estimateurs au moyen de simula-
tions et comparons la performance avec celle d’'un modéle de

" survie bivarié qui permet une corrélation entre les ages de

début seulement. Nous appliquons la méthodologie au cancer
du sein en utilisant les données de parenté de ’étude “Wash-
ington Ashkenazi”. Nous discutons également les applications
potentielles de la méthode proposée dans le domaine de la
modélisation de la guérison.
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